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ABSTRACT 
Elastic properties, fracture parameters and amplitude variation with offset and azimuth (AVOA) 
of fluid saturated porous media with obliquely dipping fractures are studied. Effective stiffness 
and anisotropy parameters for porous media with vertical fractures are studied using Gassmann 
equations for linear-slip theory and fractured models developed by Hudson and Thomsen. 
Linear-slip theory and Hudson’s model for penny-shaped cracks can be used to relate the 
anisotropic parameters to the fracture properties. Considering porous rocks with saturated penny-
shaped cracks and hydraulically connected cracks and pores, normal and tangential weakness of 
the fractures are related to fluid factor, and can be obtained by making the anisotropic parameters 
for linear-slip model be identical to anisotropic parameters given by Thomsen. The effect of fluid 
infill on elastic properties is investigated. Using Bond transformation, the stiffness matrix of the 
dipping fractured medium can be obtained. Then, characterization of fluid saturated porous rocks 
with obliquely dipping fractures is investigated, and variation of reflection coefficients as a 
function of azimuth and incidence angle is analyzed.  For the saturated porous rocks with 
obliquely dipping fractures, the effect of porosity, fluid infill and dipping angle on horizontal and 
vertical velocities, anisotropic parameters and reflection coefficients are examined. In the end, 
we estimated the dip of dipping fractures by AVOA analysis, and obtained fracture parameters 
from synthetic reflection data. Results show that this estimation method yields dip angle with 
reasonable accuracy, and inversion results are consistent with the model. Our ultimate goal is to 
invert seismic data for the physical characteristics of fractures, and host rocks. 

 
INTRODUCTION 

 
In seismic exploration, characterization of naturally fractured hydrocarbons reservoirs is of 

great interest. It is known that the orientation of fractures makes the medium azimuthally 
anisotropic. The simplest effective model of a fractured reservoir is transversely isotropic media 
with a horizontal symmetry axis (HTI), resulting from rotationally invariant vertical fracture sets 
contained in isotropic host rock.  



Fracture characterization 

2 
 

Three kinds of effective models of fractured and porous media are discussed, including 
models with thin and highly compliant layers or planes of weakness with linear-slip boundary 
conditions (Schoenberg, 1980, 1983), isolated parallel penny-shaped cracks (Hudson, 1980, 
1981), and hydraulically connected cracks and pores (Thomsen, 1995). Schoenberg and Douma 
(1988) pointed out that the model with infinite parallel fractures with linear-slip boundary 
(Schoenberg, 1980, 1983) and penny-shaped crack model have the same structure of effective 
stiffness. Bakulin (2000) demonstrated that even the presence of equant pores which are 
hydraulically connected to the fractures and cracks does not change the structure of stiffness 
tensor.  

Not all naturally fracture sets are vertical or near-vertical orientated. Over the last decades, 
there is growing studies about the obliquely dipping fractures, which may have been tilted away 
from the vertical because of the oblique stresses and other factors (Angerer et al. 2002). Grechka 
and Tsvankin (2004) investigated the characterization of obliquely dipping fractures in 
transversely isotropic background, including effective stiffness matrix, phase velocities and 
polarizations, NMO velocities in such media, and inversion of seismic data for the fracture and 
background parameters. Shaw and Sen (2004) derived the lineared reflection coefficient for a 
weakly triclinic medium underlying an isotropic medium. 

Fluid effect on seismic characteristics has also attracted increasing interest in reservoir 
characterization. Isotropic Gassmann (1995) equation is widely used to study the fluid effect in 
isotropic porous reservoirs. Gurevich (2003) modeled the elastic properties of saturated fractured 
and porous medium, by combining the linear-slip theory (Schoenberg and Douma, 1988; 
Schoenberg, 1980, 1983) and Gassmann (1995) equations. Sil and Sen (2011) analyzed the effect 
of fluid substitution on elastic properties (e.g., P-wave moduli, horizontal and vertical velocities, 
anisotropic parameters and reflection coefficients).  

We proposed a combination of linear-slip theory (Schoenberg, 1980, 1983) and   
hydraulically connected fractured and porous model given by Thomsen (1995), and a 
combination of a general linear-slip theory and elastic properties given by Gurevich (2003). For 
the saturated fractured medium with background porosity, the compliance matrix can not be 
simply written as the sum of compliance of an isotropic host rock and excess normal and 
tangential compliance associated with the fractures. However, we can still take the compliance 
matrix as a difference between the compliance matrix of the saturated fractured and porous 
medium and the saturated host rock. Here, we investigate the fracture weakness in different 
directions, and represent the stiffness matrix as sum of the saturated elastic constants and normal 
fracture weakness on different directions. Assuming the fractures are dipping, we investigated 
the reflection coefficients variation with incidence angle and azimuth. 
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METHODOLOGY 
 

Gurevich (2003) derived the exact static elastic moduli of a fluid-saturated fractured and 
porous rock based on Gassmann’s anisotropic fluid substitution equations. According to 
Gassmann’s equations, the elastic modulus of a fluid-saturated porous rock with fractures can be 
obtained by summing the elastic modulus of the dry fractured and porous rock and an additional 
fluid effect term. 

 
Saturated porous medium with vertical fractures 
 

The dry fractured and porous rock can be assumed as a spatially homogeneous and isotropic 
porous host rock permeated by a set of parallel vertical fractures (Gurevich, 2003), and can be 
treated as transversely isotropic medium with a horizontal axis of symmetry (HTI). The dry 
stiffness matrix with rotationally invariant fractures parallel to y-z plane can be expressed 
(Schoenberg and Sayers, 1995) as 
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In above equations, λ  and µ  are Lame constants, NK  and TK  are the normal and tangential 

excess fracture compliances, and N∆  and T∆  normal and tangential fracture weakness 
(Schoenberg and Sayers, 1995). 

Gurevich (2003) derived the stiffness elements of a fluid-saturated fractured rock using 
Gassmann’s equation, which is not related to the shape of the pores or fractures: 

2
0

11 1 1
16'

9
fsat

g

KL NC d L
D K L L

µ α
θ α

ϕ

  ∆ = + −  
   

 ,                                        (6) 

2
0

33 2 1
4'

9
fsat

g

KL NC d L
D K L L

µ α
θ α

ϕ

  ∆ = + −  
   

  ,                                         (7) 

2
0

13 1 1
8'

9
fsat

g

K NC d
D K L
λ µ α

θ λ α
ϕ λ

  ∆ = + +  
   

,                                           (8) 

 44
satC µ= ,  and                                                                  (9) 

( )55 1satC Tµ= − ∆ .                                                         (10) 

where,  

2

01 ( )f

g g

K K ND
K K L

α ϕ
ϕ

∆
= + − +  ,                                             (11) 

1 f

g

K
K

θ = − ,                                                               (12) 

0 1
g

K
K

α = −  ,                                                             (13) 

 
2

0'
g

K N
K L

α α= + ∆ ,                                                      (14) 

1
4
3gL K µ= + ,                                                             (15) 

1
2
3gKλ µ= − ,                                                             (16) 



Fracture characterization 

5 
 

1 1d N= − ∆ ,                                                               (17) 
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In the above equations, ϕ  is the porosity, and K, gK and fK  are bulk modulus of the dry 
host rock, solid grain and fluid, respectively. 

The stiffness matrix of Schoenberg’s linear-slip model and Hudson’s isolated penny-shaped 
fracture model have the same structure and can be identical if the fracture weakness satisfy the 
relationships given by Schoenberg and Douma (1988): 
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where, g
L
µ

= . fµ  is shear modulus of the infill material, and e is the crack density, and can 

be expressed by crack porosity Cϕ  and aspect ratio a  of the spheroidal crack: 
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For dry porous and fractured medium ( fK = fµ =0) in equation 1,  
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The compliance matrix for the saturated fractured medium with equant porosity can no 
longer be represented as the sum of isotropic host rock and an excess normal and tangential 
compliance related to the fractures. However, we can still obtain the excess compliance due to 
fractures as a difference between the compliance matrix of the saturated fractured and porous 
model and the isotropic background. In this condition, we assume the saturated stiffness matrix 
can be written in the form of  
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Following Bakulin (2000), we assume the equant porosity is small, and the Thomsen 
anisotropic parameter in Thomsen’s hydraulically connected fractured and porous model can be 
given as 
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Dcp is fluid factor, and is given (Thomsen, 1995) as 
1
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The weakness N∆ in equation 19 and equation 22 are for dry and isolated fluid-filled cracks, 
respectively. If the fluid can escape into the hydraulically connected pores from the fractures 
under stress, fracture weakness T hom senN∆ must be between zero and the fracture weakness for 
dry or gas-filled cracks. Here, we made an assumption that the stiffness matrix can be expressed 
in the form of equation 1. 
 

Reflection variation with incidence angle and azimuth 
 

Amplitude variation with offset (AVO) can be described by Thomsen type anisotropic 
parameters ( )Vε , ( )Vδ  andγ , The linearized reflection coefficient for a fractured reservoir with 
vertical fractures and isotropic overburden can be expressed as (Ruger, 1998) 
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Here, i  is the incident angle, and φ  is azimuth angle, which is the angle between the 
observation line and the symmetry axis of the fractures. 0α and 0β  are velocities of the vertical P-
wave and shear wave that is polarized on the isotropic plane. 0Z and 0G  are P-wave impendence 
and shear modulus of the background medium. ( )Vε , ( )Vδ  and γ  are Thomsen-type parameters, 
and ∆  indicating weak contrast between the upper and lower layers across the interface. 
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Shaw and Sen (2004) give the linearized reflection coefficient for a fractured reservoir with 
dipping fractures and isotropic overburden, 
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Here, 0cos cos cosψ θ φ=  with 0θ  representing the dip angle of the fractures. 
For the dry fractured porous rock, 

( ) 2 (1 )V g g Nε ≈ − − ∆                                                         (33) 

[ ]( ) 2 (1 2 )V g g N Tδ ≈ − − ∆ + ∆                                                 (34) 

2
T

γ
∆

≈                                                                     (35) 

The effect of fracture density and fluid infill on elastic properties of the fractured porous rocks 
with vertical and obliquely dipping fractures and AVOA are studied. 

 
SYNTHETIC EXAMPLES AND RESULTS 
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One of our goals of this investigation is to analyze the effect of fracture density, crack infill, 
and porosity of the background rock on the fracture weakness for different fractured models. We 
consider a fractured tight-gas sandstone model documented by Mavko et al. (2003). The 
properties of the tight gas-sandstone are shown in Table 1. 

 
Table 1. Properties of tight gas-sandstone. 
 

 P-wave velocity 
(km/s) 

S-wave velocity 
(km/s) 

Density 
(g/cm3) 

Porosity 

Tight gas-
sandstone 4.67 3.06 2.51 5% 

Saturation: Dry. 
Effective pressure: 40Mpa. 
Date source: Jizba (1991) 
 

Figure 1a shows the fracture weakness for the fractures with infill material of gas, oil and 
water using Thomsen’s hydraulically connected model. Figure 1b is the fracture weakness using 
equation 24. It is obvious, the fracture weakness using Thomsen’s hydraulically connected 
fractured and porous model are approximate to 11

satN∆ in equation 24. In figure 1b, 

11 13 33
sat sat satN N N∆ ≠ ∆ ≠ ∆ , which means that the stiffness matrix can not be written in the form of 

equation 1 for the saturated fractured and porous media. Thus the compliance matrix for the 
saturated fractured medium cannot be expressed as the sum of an isotropic saturated matrix and 
an excess compliance due to the fractures with fluid infill. Although the saturated fractured and 
porous medium cannot be described by two elastic constants of the background and two excess 
compliance of the fractures, it can be described by six parameters ( λ , µ , 11

satN∆ , 13
satN∆ , 33

satN∆ , 
and T∆ ). As we can see in figure 1b, the fracture weaknesses for three directions are different 
for crack infill of gas, oil and water. The distribution of fracture weakness for different directions, 
especially, 33

satN∆  may provide us a method to separate dry (or gas-filled) and fluid-filled cracks. 
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Figure 1. a) Fracture weakness variation with fracture density using Thomen’s hydraulically 
connected fractured and porous model. Assuming the equant porosity is small, and the stiffness 
matrix can be expressed in the form of equation 1. b) Fracture weakness in different directions 
variation with fracture density for fluid infill of gas, oil and water. 

 
Figure 2 shows the effect of porosity of the background on the fracture weakness and 

anisotropy parameter ε . Figure 2a shows the normal fracture weakness variation with equant 
porosity. This normal fracture weakness is obtained using the saturated hydraulically connected 
fractured and porous model given by Thomsen. The normal weakness N∆ is zero for zero 
background porosity, and increases sharply within one or two percent porosity. The sharp 
increase of N∆ results from the fact that fluid factor increase sharply to 1, with the increase of 
equant porosity. Figure 2b shows similar increase in P-wave anisotropy parameter ε . As 
discussed by Thomsen (1995), the fluid in the fractures has plenty of space to escape to when the 
equant porosity increase from zero to a few percent, so the fracture will be as compliant as in the 
dry medium. Figure 2c shows the fracture weakness in different directions, and shows similar 
increase. However, the increase of 33

satN∆  is small. We think it is because when compressed, the 
fluids in the vertical fractures may mainly escape horizontally to the surrounded pores. That is 
also why 11

satN∆  increase sharply like the normal fracture weakness in Thomsen’s model. 

a) b) 
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Figure 2. a) Fracture weakness variation with porosity using Thomen’s hydraulically connected 
fractured and porous model. Assuming the equant porosity is small, and the stiffness matrix can 
be expressed in the form of equation 1. b) P-wave anisotropy parameter ε  variation with 
porosity for fluid infill of gas, oil and water.  c) Normal fracture weakness for different directions 
variation with porosity for fluid infill of gas, oil and water. 

 
We also investigate the effect of porosity on horizontal and vertical P-wave velocity, for 

different fracture weakness. In figure 3b, the velocity decrease with the increase of fracture 
weakness. However, in figure 3a, the decrease is not obvious for the vertical P-wave velocity. 

a) b) 

c) 
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Figure 3. a) Vertical and b) Horizontal velocity variation with porosity for different fracture 
weakness. 

 
In order to investigate the reflection variation with incidence angle and azimuth, we 

consider a model with two layers (Table 2). The upper layer is isotropic water-saturated 
sandstone, and the lower layer in tight gas-sandstone containing obliquely dipping fractures. 
We assume the dip is 0°，30°and 60°respectively. The reflection coefficients variation with 
incidence angle and azimuth is shown in figure 4a. Figure 4b shows the reflection 
coefficients variation with azimuth for dip angle of  0°, 30°and 60°, when the incidence angle 
is 30°. 

 
Table 2. Properties of a two-layer model 
 

 P-wave velocity 
(km/s) 

S-wave velocity 
(km/s) 

Density 
(g/cm3) 

ΔN ΔT 

Sandstone 
Tight-gas 
sandstone 

4.09 
4.67 

2.41 
3.06 

2.37 
2.51 

0 
0.15 

0 
0.1 
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Figure 4. a) reflection coefficients variation with incidence angle and azimuth. b) reflection 

coefficients variation with azimuth for dip angle of  0°, 30°and 60°, when the incidence angle is 
30°. 

 
The effect of fluid on AVOA 
 

We studied the effect of fluid on AVOA, by using a 100% water or gas saturated porous 
model with obliquely dipping fractures. The reason why we take the tight-gas sandstone as the 
upper layer, and take sandstone as the lower layer is that the porosity range of the tight-sandstone 
model documented by Mavko (2009)  is 0~15%. In this work, we investigate reflection 
coefficients when the porosity is 10% and 25%, respectively. Given the physical properties of the 
dry fractured sandstone, ( )V

satε , ( )V
satδ , and satγ can be calculated. 

 
Table 3. Properties of a two-layer model 
 

 P-wave velocity 
(km/s) 

S-wave velocity 
(km/s) 

Density 
(g/cm3) 

ΔN ΔT 

Tight-gas 
sandstone 
Sandstone 

4.67 
4.09 

3.06 
2.41 

2.51 
2.37 

0 
0.15 

0 
0.1 

 

Figure 5a, 5c, 5e, and 5g illustrates the effect of porosity and fluid infill on amplitude 
variation with azimuth and incident angle for different dip angle. Dip=0°means that the fracture 
is vertical. Figure 5b, 5d, 5f, and 5h shows the reflection coefficient variation with azimuth angle 
for different dip angle, when the incident angle is 30°. 

a) b) 
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Small porosity of 10% and large porosity of 25% are considered in this case. For small 
incident angle, reflection coefficient variation with azimuth is almost not visible. This is because 
the fracture density here is small. The variation with azimuth is more visible for larger porosity. 
For the water saturated fractured porous model with porosity of 10%, reflection amplitude 
decrease with the increase of incident angle. However, for the gas saturated model with porosity 
of 25%, reflection amplitude increase with the increase of incident angle. For gas saturated 
fractured porous rock, we obtained the same result. An increase in the equant porosity changes 
the trends of the reflection coefficients variation with incidence angle. 
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a) b) 

c) d) 

e) f ) 

g) h) 

a) 
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Figure 5. Reflection coefficients variation with incidence angle and azimuth for a) water saturated 
fractured model with porosity of 10%, c) water saturated fractured model with porosity of 25%, 
e) gas saturated fractured model with porosity of 10%, and g) gas saturated fractured model 
with porosity of 25%;  reflection coefficients variation with azimuth for dip angle of  0°, 30°and 
60°, when the incidence angle is 30°for b) water saturated fractured model with porosity of 10%, 
d) water saturated fractured model with porosity of 25%, f) gas saturated fractured model with 
porosity of 10%, and h) gas saturated fractured model with porosity of 25%. 

 

CONCLUSIONS 
 

We proposed a combination of linear-slip theory (Schoenberg, 1980, 1983) and   
hydraulically connected fractured and porous model given by Thomsen (1995). For small equant 
porosity, we investigate the hydraulically connected fractured and porous model given by 
Thomsen. Assuming the compliance matrix for small equant porosity can be expressed by the 
sum of an isotropic matrix of the saturated host rock and an excess compliance, we can derive 
the fracture weakness for the hydraulically connected fractured and porous model.  

We also proposed a combination of a general linear-slip theory and elastic properties given 
by Gurevich (2003). For the saturated fractured medium with background porosity, we can still 
take the compliance matrix as a difference between the compliance matrix of the saturated 
fractured and porous medium and the saturated host rock. In this work, we investigated the 
fracture weakness for different directions, and represent the stiffness matrix as sum of the 
saturated elastic constants and normal fracture weakness for different directions. Assuming the 
fractures are dipping, we investigated the reflection coefficients variation with incidence angle 
and azimuth.We observe that an increase in porosity or fracture density make the velocity 
decreased, and the change is more notable for the horizontal P-wave than vertical P-wave. Both 
in water saturated and gas saturated fractured rocks, the trend of reflection coefficients changed 
because of the increase or decrease of the porosity.  

In the future, estimation and inversion of physical characteristics of the fractures (e.g., 
orientation and density of the fractures, and fracture infill) and elastic properties of the host rock 
will be done. 
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